At What Latency Does the Phase of Brain Oscillations Influence Perception?

نویسندگان

  • Sasskia Brüers
  • Rufin VanRullen
چکیده

Recent evidence has shown a rhythmic modulation of perception: prestimulus ongoing electroencephalography (EEG) phase in the θ (4-8 Hz) and α (8-13 Hz) bands has been directly linked with fluctuations in target detection. In fact, the ongoing EEG phase directly reflects cortical excitability: it acts as a gating mechanism for information flow at the neuronal level. Consequently, the key phase modulating perception should be the one present in the brain when the stimulus is actually being processed. Most previous studies, however, reported phase modulation peaking 100 ms or more before target onset. To explain this discrepancy, we first use simulations showing that contamination of spontaneous oscillatory signals by target-evoked ERP and signal filtering (e.g., wavelet) can result in an apparent shift of the peak phase modulation towards earlier latencies, potentially reaching the prestimulus period. We then present a paradigm based on linear systems analysis which can uncover the true latency at which ongoing EEG phase influences perception. After measuring the impulse response function, we use it to reconstruct (rather than record) the brain activity of human observers during white noise sequences. We can then present targets in those sequences, and reliably estimate EEG phase around these targets without any influence of the target-evoked response. We find that in these reconstructed signals, the important phase for perception is that of fronto-occipital ∼6 Hz background oscillations at about 75 ms after target onset. These results confirm the causal influence of phase on perception at the time the stimulus is effectively processed in the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittent Photoperiod Schedule does not Influence Brain and Serum Melatonin and Selected Serum Antioxidant Enzymes Activity in Broiler Chickens

This study evaluated the effect of the intermittent light program on serum and brain melatonin concentrations, antioxidant enzyme activities, and homocysteine concentration in broiler chickens. A total of 60 one-day-old broiler chickens (Cobb 500) were distributed in three light-proof controlled rooms (20 chicks per room). All birds were reared in continuous light until 3 days of age. Then, chi...

متن کامل

Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli

Ongoing fluctuations of intrinsic cortical networks determine the dynamic state of the brain, and influence the perception of forthcoming sensory inputs. The functional state of these networks is defined by the amplitude and phase of ongoing oscillations of neuronal populations at different frequencies. The contribution of functionally different cortical networks has yet to be elucidated, and o...

متن کامل

The phase of prestimulus alpha oscillations affects tactile perception.

Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral ...

متن کامل

The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception.

Why does neuronal activity in sensory brain areas sometimes give rise to perception, and sometimes not? Although neuronal noise is often invoked as the key factor, a portion of this variability could also be due to the history and current state of the brain affecting cortical excitability. Here we directly test this idea by examining whether the phase of prestimulus oscillatory activity is caus...

متن کامل

Where Does EEG Come From and What Does It Mean?

Electroencephalography (EEG) has been instrumental in making discoveries about cognition, brain function, and dysfunction. However, where do EEG signals come from and what do they mean? The purpose of this paper is to argue that we know shockingly little about the answer to this question, to highlight what we do know, how important the answers are, and how modern neuroscience technologies that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017